
  

2.1. Memory Addresses  
 Programmers refer to a memory address as the way to access a memory cell. But when 

dealing with 80 x 86 microprocessors, we have to distinguish three kinds of addresses:

 Logical address: Included in the machine language instructions to specify the address 
of an operand or of an instruction. 

 embodies the well-known 80 x 86 segmented architecture. 
 consists of a segment and an offset

 Linear address (also known as virtual address): A single 32-bit unsigned integer

 can be used to address up to 4 GB

 usually represented in hexadecimal notation (from 0x00000000 to 0xffffffff)

 Physical address: Used to address memory cells in memory chips. 

 They correspond to the electrical signals sent along the address pins of the 
microprocessor to the memory bus. 

 Physical addresses are represented as 32-bit or 36-bit unsigned integers.
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2.2. Segmentation in Hardware 

 Starting with the 80286 model, Intel microprocessors perform address translation in 
two different ways called real mode and protected mode.

 We'll focus in the next sections on address translation when protected mode is 
enabled. 

 Real mode exists mostly to maintain processor compatibility with older models 
and to allow the operating system to bootstrap.



  

2.2.1. Segment Selectors and 
Segmentation Registers

 A logical address consists of two parts: a segment identifier and an offset that 
specifies the relative address within the segment. 

 The segment identifier is a 16-bit field called the Segment Selector, while the offset 
is a 32-bit field. 

 To make it easy to retrieve segment selectors quickly, the processor provides 
segmentation registers whose only purpose is to hold Segment Selectors; these 
registers are called cs, ss, ds, es, fs, and gs. 



  

Segmentation registers

 Three of the six segmentation registers have specific purposes:

 cs: The code segment register, which points to a segment containing program 
instructions

 ss: The stack segment register, which points to a segment containing the current 
program stack

 ds: The data segment register, which points to a segment containing global and static 
data

 The cs register has another important function: it includes a 2-bit field that specifies the 
Current Privilege Level (CPL) of the CPU. The value 0 denotes the highest privilege 
level, while the value 3 denotes the lowest one. 

 Linux uses only levels 0 and 3, which are respectively called Kernel Mode and User 
Mode.



  

Selector and descriptor



  

 2.2.2. Segment Descriptors

 Each segment is represented by an 8-byte Segment Descriptor that describes the 
segment characteristics. 

 Segment Descriptors are stored either in the Global Descriptor Table (GDT ) or in 
the Local Descriptor Table(LDT).

 Usually only one GDT is defined, while each process is permitted to have its own 
LDT if it needs to create additional segments besides those stored in the GDT. 

 The address and size of the GDT in main memory are contained in the gdtr control 
register, while the address and size of the currently used LDT are contained in the 
ldtr control register.

 Figure 2-3 illustrates the format of a Segment Descriptor; the meaning of the various 
fields is explained in Table 2-1.



  

Segment descriptor format



  

Table 2-1. Segment Descriptor field
 Base: Contains the linear address of the first byte of the segment.

 G: Granularity flag: if it is cleared (equal to 0), the segment size is expressed in bytes; otherwise, it 
is expressed in multiples of 4096 bytes.

 Limit: Holds the offset of the last memory cell in the segment, thus binding the segment length. 
When G is set to 0, the size of a segment may vary between 1 byte and 1 MB; otherwise, it may 
vary between 4 KB and 4 GB.

 S: System flag: if it is cleared, the segment is a system segment that stores critical data structures 
such as the Local Descriptor Table; otherwise, it is a normal code or data segment.

 Type: Characterizes the segment type and its access rights.

 DPL: Descriptor Privilege Level: used to restrict accesses to the segment. It represents the 
minimal CPU privilege level requested for accessing the segment. Therefore, a segment with its 
DPL set to 0 is accessible only when the CPL is 0 that is, in Kernel Mode while a segment with its 
DPL set to 3 is accessible with every CPL value.

 P: Segment-Present flag: is equal to 0 if the segment is not stored currently in main memory. Linux 
always sets this flag (bit 47) to 1, because it never swaps out whole segments to disk.

 D or B: Called D or B depending on whether the segment contains code or data. Its meaning is 
slightly different in the two cases, but it is basically set (equal to 1) if the addresses used as 
segment offsets are 32 bits long, and it is cleared if they are 16 bits long (see the Intel manual for 
further details).

 AVL: May be used by the operating system, but it is ignored by Linux.



  

Types of segments widely 
used in Linux

 Code Segment Descriptor: Indicates that the Segment Descriptor refers to a code 
segment; it may be included either in the GDT or in the LDT. The descriptor has the S flag 
set (non-system segment).

 Data Segment Descriptor: Indicates that the Segment Descriptor refers to a data segment; 
it may be included either in the GDT or in the LDT. The descriptor has the S flag set. Stack 
segments are implemented by means of generic data segments.

 Task State Segment Descriptor (TSSD): Indicates that the Segment Descriptor refers to a 
Task State Segment (TSS) that is, a segment used to save the contents of the processor 
registers (see the section "Task State Segment" in Chapter 3); it can appear only in the 
GDT. The corresponding Type field has the value 11 or 9, depending on whether the 
corresponding process is currently executing on a CPU. The S flag of such descriptors is set 
to 0.

 Local Descriptor Table Descriptor (LDTD): Indicates that the Segment Descriptor refers 
to a segment containing an LDT; it can appear only in the GDT. The corresponding Type 
field has the value 2. The S flag of such descriptors is set to 0. The next section shows how 
80 x 86 processors are able to decide whether a segment descriptor is stored in the GDT or 
in the LDT of the process.



  

Any Segment Selector includes three 
fields

 Index: Identifies the Segment Descriptor entry contained in the GDT or in the LDT 

 TI: Table Indicator : specifies whether the Segment Descriptor is included in the 
GDT (TI = 0) or in the LDT (TI = 1). 

 RPL: Requestor Privilege Level : specifies the Current Privilege Level of the CPU when the 
corresponding Segment Selector is loaded into the cs register; it also may be used to 
selectively weaken the processor privilege level when accessing data segments (see Intel 
documentation for details).



  

2.2.4. Segmentation Unit

 Figure 2-5 shows in detail how a logical address is translated into a corresponding 
linear address. The segmentation unit performs the following operations:

 Examines the TI field of the Segment Selector to determine which Descriptor 
Table stores the Segment Descriptor. This field indicates that the Descriptor is 
either in the GDT (in which case the segmentation unit gets the base linear 
address of the GDT from the gdtr register) or in the active LDT (in which case the 
segmentation unit gets the base linear address of that LDT from the ldtr register).

 Computes the address of the Segment Descriptor from the index field of the 
Segment Selector. The index field is multiplied by 8 (the size of a Segment 
Descriptor), and the result is added to the content of the gdtr or ldtr register.

 Adds the offset of the logical address to the Base field of the Segment 
Descriptor, thus obtaining the linear address.

 Notice that, thanks to the nonprogrammable registers associated with the 
segmentation registers, the first two operations need to be performed only when a 
segmentation register has been changed.



  

Translating a logical address



  

2.3. Segmentation in Linux

 Linux uses segmentation in a very limited way. 

 In fact, segmentation and paging are somewhat redundant, because both can be 
used to separate the physical address spaces of processes: 

 segmentation can assign a different linear address space to each process, 

 while paging can map the same linear address space into different physical 
address spaces. 

 Linux prefers paging to segmentation for the following reasons:

 Memory management is simpler when all processes use the same segment 
register values that is, when they share the same set of linear addresses.

 One of the design objectives of Linux is portability to a wide range of 
architectures; RISC architectures in particular have limited support for 
segmentation.



  

Memory managment models



  

Use of segment registers in 
segmented memory model



  

Use of segment registers in
flat memory model



  

Code and data segments 
used by Linux

 The 2.6 version of Linux uses segmentation only when required by the 80 x 86 architecture.

 All Linux processes running in User Mode use the same pair of segments to address 
instructions and data. These segments are called user code segment and user data 
segment , respectively. 

 Similarly, all Linux processes running in Kernel Mode use the same pair of segments to 
address instructions and data: they are called kernel code segment and kernel data 
segment , respectively. 

 Table 2-3 shows the values of the Segment Descriptor fields for these four crucial 
segments.

Segment Base      G Limit S Type DPL D/B P

user code 0x00000000 1 0xfffff 1 10 3 1 1

user data 0x00000000 1 0xfffff 1 2 3 1 1

kernel code 0x00000000 1 0xfffff 1 10 0 1 1

kernel data 0x00000000 1 0xfffff 1 2 0 1 1

 Besides the four segments just described, Linux makes use of a few other specialized 
segments. We'll introduce them in the next section while describing the Linux GDT.



  

Code and data segments 
used by Linux

 The corresponding Segment Selectors are defined by the macros _ _USER_CS, _ 
_USER_DS, _ _KERNEL_CS, and _ _KERNEL_DS, respectively. To address the kernel 
code segment, for instance, the kernel just loads the value yielded by the _ _KERNEL_CS 
macro into the cs segmentation register.

 Notice that the linear addresses associated with such segments all start at 0 and reach the 
addressing limit of 2^32 -1. This means that all processes, either in User Mode or in 
Kernel Mode, may use the same logical addresses.

 Another important consequence of having all segments start at 0x00000000 is that in Linux, 
logical addresses coincide with linear addresses; that is, the value of the Offset field of a 
logical address always coincides with the value of the corresponding linear address.



  

2.3.1 The Linux GDT

 In uniprocessor systems there is only one GDT, while in multiprocessor systems 
there is one GDT for every CPU in the system. 

 All GDTs are stored in the cpu_gdt_table array, while the addresses and sizes of the 
GDTs (used when initializing the gdtr registers) are stored in the cpu_gdt_descr 
array. 

 The layout of the GDTs is shown schematically in Figure 2-6. Each GDT includes 18 
segment descriptors and 14 null, unused, or reserved entries. 

 Unused entries are inserted on purpose so that Segment Descriptors usually 
accessed together are kept in the same 32-byte line of the hardware cache

 All copies of the GDT store identical entries, except for a few cases. 

 First, each processor has its own TSS segment, thus the corresponding 
GDT's entries differ. 

 Moreover, a few entries in the GDT may depend on the process that the CPU is 
executing (LDT and TLS Segment Descriptors). 

 Finally, in some cases a processor may temporarily modify an entry in its copy of 
the GDT; this happens, for instance, when invoking an APM's BIOS procedure.



  

Linux GDT



  

2.4 Paging in Hardware

 The paging unit translates linear addresses into physical ones. 

 One key task in the unit is to check the requested access type against the access 
rights of the linear address. If the memory access is not valid, it generates a Page 
Fault exception (see Chapter 4 and Chapter 8).

 For the sake of efficiency, linear addresses are grouped in fixed-length intervals 
called pages ; contiguous linear addresses within a page are mapped into 
contiguous physical addresses. 

 In this way, the kernel can specify the physical address and the access rights of 
a page instead of those of all the linear addresses included in it. Following the usual 
convention, we shall use the term "page" to refer both to a set of linear addresses 
and to the data contained in this group of addresses.

 The paging unit thinks of all RAM as partitioned into fixed-length page frames 
(sometimes referred to as physical pages ). 

 Each page frame contains a page that is, the length of a page frame coincides 
with that of a page. 

 A page frame is a constituent of main memory, and hence it is a storage area. It 
is important to distinguish a page from a page frame; the former is just a 
block of data, which may be stored in any page frame or on disk.



  



  

Paging in Hardware

 The data structures that map linear to physical addresses are called page tables ; 
they are stored in main memory and must be properly initialized by the kernel 
before enabling the paging unit.

 Starting with the 80386, all 80 x 86 processors support paging; it is enabled by setting 
the PG flag of a control register named cr0 . 

 When PG = 0, linear addresses are interpreted as physical addresses.



  

2.4.1. Regular Paging 

 Starting with the 80386, the paging unit of Intel processors handles 4 KB pages. 

 The 32 bits of a linear address are divided into three fields:

 Directory: The most significant 10 bits

 Table: The intermediate 10 bits

 Offset: The least significant 12 bits

 The translation of linear addresses is accomplished in two steps, each based on a type of 
translation table. The first translation table is called the Page Directory, and the second is 
called the Page Table.

 (In the discussion that follows, the lowercase "page table" term denotes any page storing 
the mapping between linear and physical addresses, while the capitalized "Page Table" 
term denotes a page in the last level of page tables.)



  

 multilevel page tables

 If a simple one-level Page Table was used, then it would require up to 2^20 entries 
(i.e., at 4 bytes per entry, 4 MB of RAM) to represent the Page Table for each 
process (if the process used a full 4 GB linear address space), even though a 
process does not use all addresses in that range. 

 The two-level scheme reduces the memory by requiring Page Tables only for 
those virtual memory regions actually used by a process.

 Each active process must have a Page Directory assigned to it. However, there is no 
need to allocate RAM for all Page Tables of a process at once; it is more efficient to 
allocate RAM for a Page Table only when the process effectively needs it.

 The physical address of the Page Directory in use is stored in a control register 
named cr3 . 

 The Directory field within the linear address determines the entry in the Page 
Directory that points to the proper Page Table. The address's Table field, in turn, 
determines the entry in the Page Table that contains the physical address of the page 
frame containing the page. The Offset field determines the relative position within the 
page frame (see Figure 2-7). Because it is 12 bits long, each page consists of 4096 
bytes of data.



  

2 level paging



  

Entry fields

 Both the Directory and the Table fields are 10 bits long, so Page Directories and 
Page Tables can include up to 1,024 entries. It follows that a Page Directory can 
address up to 1024 x 1024 x 4096 = 2**32 memory cells, as you'd expect in 32-bit 
addresses. 

 The entries of Page Directories and Page Tables have the same structure. Each 
entry includes the following fields:

 Present flag: If it is set, the referred-to page (or Page Table) is contained in 
main memory; if the flag is 0, the page is not contained in main memory and the 
remaining entry bits may be used by the operating system for its own purposes. If 
the entry of a Page Table or Page Directory needed to perform an address 
translation has the Present flag cleared, the paging unit stores the linear address 
in a control register named cr2 and generates exception 14: the Page Fault 
exception. 

 Field containing the 20 most significant bits of a page frame physical 
address: Because each page frame has a 4-KB capacity, its physical address 
must be a multiple of 4096, so the 12 least significant bits of the physical address 
are always equal to 0. If the field refers to a Page Directory, the page frame 
contains a Page Table; if it refers to a Page Table, the page frame contains a 
page of data.



  

Paging in Hardware

 Accessed flag: Set each time the paging unit addresses the corresponding page 
frame. This flag may be used by the operating system when selecting pages to be 
swapped out. The paging unit never resets this flag; this must be done by the 
operating system.

 Dirty flag: Applies only to the Page Table entries. It is set each time a write operation 
is performed on the page frame. As with the Accessed flag, Dirty may be used by the 
operating system when selecting pages to be swapped out. The paging unit never 
resets this flag; this must be done by the operating system.

 Read/Write flag: Contains the access right (Read/Write or Read) of the page or of 
the Page Table (see the section "Hardware Protection Scheme" later in this chapter).

 User/Supervisor flag: Contains the privilege level required to access the page or 
Page Table (see the later section "Hardware Protection Scheme").

 PCD and PWT flags: Controls the way the page or Page Table is handled by the 
hardware cache (see the section "Hardware Cache" later in this chapter).

 Page Size flag: Applies only to Page Directory entries. If it is set, the entry refers to a 
2 MB- or 4 MB-long page frame (see the following sections).

 Global flag: Applies only to Page Table entries. This flag was introduced in the 
Pentium Pro to prevent frequently used pages from being flushed from the TLB cache 
(see the section "Translation Lookaside Buffers (TLB)" later in this chapter). It works 
only if the Page Global Enable (PGE) flag of register cr4 is set.



  



  

2.4.2. Extended Paging

 Starting with the Pentium model, 80 x 86 microprocessors introduce extended 
paging, which allows page frames to be 4 MB instead of 4 KB in size. 

 Extended paging is used to translate large contiguous linear address ranges into 
corresponding physical ones; in these cases, the kernel can do without 
intermediate Page Tables and thus save memory and preserve TLB entries.

 As mentioned in the previous section, extended paging is enabled by setting the 
Page Size flag of a Page Directory entry. In this case, the paging unit divides the 
32 bits of a linear address into two fields:

 Directory: The most significant 10 bits

 Offset: The remaining 22 bits

 Page Directory entries for extended paging are the same as for normal paging, 
except that:

 The Page Size flag must be set.

 Only the 10 most significant bits of the 20-bit physical address field are 
significant. This is because each physical address is aligned on a 4-MB 
boundary, so the 22 least significant bits of the address are 0.

 Extended paging coexists with regular paging; it is enabled by setting the PSE 
flag of the cr4 processor register.



  

Extended paging



  

2.4.3. Hardware Protection Scheme 

 The paging unit uses a different protection scheme from the segmentation unit. 

 While 80 x 86 processors allow four possible privilege levels to a segment, only two 
privilege levels are associated with pages and Page Tables, because privileges 
are controlled by the User/Supervisor flag:

 When this flag is 0, the page can be addressed only when the CPL is less than 3 
(this means, for Linux, when the processor is in Kernel Mode). 

 When the flag is 1, the page can always be addressed.

 Furthermore, instead of the three types of access rights (Read, Write, and Execute) 
associated with segments, only two types of access rights (Read and Write) are 
associated with pages:

 If the Read/Write flag of a Page Directory or Page Table entry is equal to 0, the 
corresponding Page Table or page can only be read; 

 otherwise it can be read and written.

 Recent Intel Pentium 4 processors support an NX (No eXecute) flag in each 64-
bit Page Table entry.



  

2.4.4. An Example of Regular Paging    

 A simple example will help in clarifying how regular paging works. Let's assume that 
the kernel assigns the linear address space between 0x20000000 and 0x2003ffff to a 
running process.

 This space consists of exactly 64 pages. We don't care about the physical addresses 
of the page frames containing the pages; in fact, some of them might not even be in 
main memory. We are interested only in the remaining fields of the Page Table 
entries.

 Let's start with the 10 most significant bits of the linear addresses assigned to the 
process, which are interpreted as the Directory field by the paging unit. 

 The addresses start with a 2 followed by zeros, so the 10 bits all have the same 
value, namely 0x080 or 128 decimal. (binary: 0000 1000 0000)

 Thus the Directory field in all the addresses refers to the 129th entry of the 
process Page Directory. The corresponding entry must contain the physical 
address of the Page Table assigned to the process (see Figure 2-9). 

 If no other linear addresses are assigned to the process, all the remaining 1,023 
entries of the Page Directory are filled with zeros.

 The values assumed by the intermediate 10 bits, (that is, the values of the Table 
field) range from 0 to 0x03f, or from 0 to 63 decimal. Thus, only the first 64 entries of 
the Page Table are valid. The remaining 960 entries are filled with zeros.



  

An example of paging



  

An example of paging

 Suppose that the process needs to read the byte at linear address 0x20021406. This 
address is handled by the paging unit as follows:

 The Directory field 0x80 is used to select entry 0x80 of the Page Directory, which 
points to the Page Table associated with the process's pages.

 The Table field 0x21 is used to select entry 0x21 of the Page Table, which points 
to the page frame containing the desired page.

 Finally, the Offset field 0x406 is used to select the byte at offset 0x406 in the 
desired page frame.

 If the Present flag of the 0x21 entry of the Page Table is cleared, the page is not 
present in main memory; in this case, the paging unit issues a Page Fault exception 
while translating the linear address. 

 The same exception is issued whenever the process attempts to access linear 
addresses outside of the interval delimited by 0x20000000 and 0x2003ffff, 
because the Page Table entries not assigned to the process are filled with zeros; in 
particular, their Present flags are all cleared.



  

2.4.5. The Physical Address Extension (PAE) 
Paging Mechanism

 The amount of RAM supported by a processor is limited by the number of address pins 
connected to the address bus. Older Intel processors from the 80386 to the Pentium 
used 32-bit physical addresses. In theory, up to 4 GB of RAM could be installed on 
such systems; 

 in practice, due to the linear address space requirements of User Mode 
processes, the kernel cannot directly address more than 1 GB of RAM, as we 
will see in the later section "Paging in Linux."

 However, big servers that need to run hundreds or thousands of processes at the 
same time require more than 4 GB of RAM.

 Intel has satisfied these requests by increasing the number of address pins on its 
processors from 32 to 36. Starting with the Pentium Pro, all Intel processors are 
now able to address up to 2**36 = 64 GB of RAM. 

 With the Pentium Pro processor, Intel introduced a mechanism called Physical 
Address Extension (PAE).



  

PAE

 PAE is activated by setting the Physical Address Extension (PAE) flag in the cr4 
control register. 

 Intel has changed the paging mechanism in order to support PAE.

 The 64 GB of RAM are split into 2**24 distinct page frames, and the physical 
address field of Page Table entries has been expanded from 20 to 24 bits. 

 Because a PAE Page Table entry must include the 12 flag bits (described in the 
earlier section "Regular Paging") and the 24 physical address bits, for a grand 
total of 36, the Page Table entry size has been doubled from 32 bits to 64 
bits. As a result, a 4-KB PAE Page Table includes 512 entries instead of 
1,024.

 A new level of Page Table called the Page Directory Pointer Table (PDPT) 
consisting of four 64-bit entries has been introduced.

 The cr3 control register contains a 27-bit Page Directory Pointer Table base 
address field. Because PDPTs are stored in the first 4 GB of RAM and aligned 
to a multiple of 32 bytes (2**5), 27 bits are sufficient to represent the base 
address of such tables.

 The Page Size (PS) flag in the page directory entry enables large page sizes (2 MB 
when PAE is enabled).



  

PAE

 When mapping linear addresses to 4 KB pages (PS flag cleared in Page Directory 
entry), the 32 bits of a linear address are interpreted in the following way:

 cr3: Points to a PDPT

 bits 31-30: Point to 1 of 4 possible entries in PDPT

 bits 29-21: Point to 1 of 512 possible entries in Page Directory

 bits 20-12: Point to 1 of 512 possible entries in Page Table

 bits 11-0: Offset of 4-KB page

 When mapping linear addresses to 2-MB pages (PS flag set in Page Directory 
entry), the 32 bits of a linear address are interpreted in the following way:

 cr3: Points to a PDPT

 bits 31-30: Point to 1 of 4 possible entries in PDPT

 bits 29-21: Point to 1 of 512 possible entries in Page Directory

 bits 20-0: Offset of 2-MB page



  

To summarize

 Once cr3 is set, it is possible to address up to 4 GB of RAM. If we want to address 
more RAM, we'll have to put a new value in cr3 or change the content of the PDPT. 

 However, the main problem with PAE is that linear addresses are still 32 bits 
long. This forces kernel programmers to reuse the same linear addresses to 
map different areas of RAM.

 We'll sketch how Linux initializes Page Tables when PAE is enabled in the later 
section, "Final kernel Page Table when RAM size is more than 4096 MB." 

 Clearly, PAE does not enlarge the linear address space of a process, because it 
deals only with physical addresses. Furthermore, only the kernel can modify the 
page tables of the processes, thus a process running in User Mode cannot use a 
physical address space larger than 4 GB. 

 On the other hand, PAE allows the kernel to exploit up to 64 GB of RAM, and thus to 
increase significantly the number of processes in the system.



  

2.4.6. Paging for 64-bit Architectures

 The third level of paging present in 80 x 86 processors with PAE enabled has been 
introduced only to lower from 1024 to 512 the number of entries in the Page 
Directory and Page Tables. 

 This enlarges the Page Table entries from 32 bits to 64 bits so that they can store 
the 24 most significant bits of the physical address.

 Two-level paging, however, is not suitable for computers that adopt a 64-bit 
architecture. Let's use a thought experiment to explain why:

 Start by assuming a standard page size of 4 KB. Because 1 KB covers a range 
of 2^10 addresses, 4 KB covers 2^12 addresses, so the Offset field is 12 bits.

 This leaves up to 52 bits of the linear address to be distributed between the 
Table and the Directory fields. 

 If we now decide to use only 48 of the 64 bits for addressing (this restriction 
leaves us with a comfortable 256 TB address space!), the remaining 48-12 = 36 
bits will have to be split among Table and the Directory fields. 

 If we now decide to reserve 18 bits for each of these two fields, both the Page 
Directory and the Page Tables of each process should include 2^18 entries that 
is, more than 256,000 entries.



  

Paging levels in some 64-bit architectures

 All hardware paging systems for 64-bit processors make use of additional paging levels. The 
number of levels used depends on the type of processor. Table 2-4 summarizes the 
main characteristics of the hardware paging systems used by some 64-bit platforms 
supported by Linux. 

Platform            Page size       address bits used                        paging levels                      splitting 

alpha 8 Kb * 43 3 10 + 10 + 10 + 13

ia64 4 KB * 39 3    9 + 9 + 9 + 12

ppc64 4 KB 41 3 10 + 10 + 9 + 12

sh64 4 KB 41 3 10 + 10 + 9 + 12

x86_64 4 KB 48 4   9 + 9 + 9 + 9 + 12

*This architecture supports different page sizes; we select a typical page size adopted by Linux

 As we will see in the section "Paging in Linux" later in this chapter, Linux succeeds in 
providing a common paging model that fits most of the supported hardware paging 
systems.



  

2.4.7. Hardware Cache

 Today's microprocessors have clock rates of several gigahertz, while dynamic RAM 
(DRAM) chips have access times in the range of hundreds of clock cycles.

 This means that the CPU may be held back considerably while executing instructions 
that require fetching operands from RAM and/or storing results into RAM.

 Hardware cache memories were introduced to reduce the speed mismatch between 
CPU and RAM. 

 They are based on the well-known locality principle , which holds both for programs 
and data structures.

 It therefore makes sense to introduce a smaller and faster memory that contains 
the most recently used code and data. 

 For this purpose, a new unit called the line was introduced into the 80 x 86 
architecture. It consists of a few dozen contiguous bytes that are transferred in 
burst mode between the slow DRAM and the fast on-chip static RAM (SRAM) used 
to implement caches.



  



  

Hit and miss, 
write-through and write-back

 When accessing a RAM memory cell, the CPU extracts the subset index from the physical 
address and compares the tags of all lines in the subset with the high-order bits of the physical 
address. If a line with the same tag as the high-order bits of the address is found, the CPU has 
a cache hit; otherwise, it has a cache miss.

 When a cache hit occurs, the cache controller behaves differently, depending on the access 
type. 

 For a read operation, the controller selects the data from the cache line and transfers it 
into a CPU register; the RAM is not accessed and the CPU saves time, which is why the 
cache system was invented. 

 For a write operation, the controller may implement one of two basic strategies called 
write-through and write-back . In a write-through, the controller always writes into both 
RAM and the cache line, effectively switching off the cache for write operations. In a write-
back, which offers more immediate efficiency, only the cache line is updated and the 
contents of the RAM are left unchanged. After a write-back, of course, the RAM must 
eventually be updated. The cache controller writes the cache line back into RAM only 
when the CPU executes an instruction requiring a flush of cache entries or when a FLUSH 
hardware signal occurs (usually after a cache miss).

 When a cache miss occurs, the cache line is written to memory, if necessary, and the correct 
line is fetched from RAM into the cache entry.



  

Cache snooping

 Multiprocessor systems have a separate hardware cache for every processor, and 
therefore they need additional hardware circuitry to synchronize the cache contents.

  As shown in Figure 2-11, each CPU has its own local hardware cache. But now 
updating becomes more time consuming: whenever a CPU modifies its hardware 
cache, 

 it must check whether the same data is contained in the other hardware cache; if 
so, it must notify the other CPU to update it with the proper value. 

 This activity is often called cache snooping . Luckily, all this is done at the hardware 
level and is of no concern to the kernel.



  

Caches in SMP



  

Caches and page table entries

 The CD flag of the cr0 processor register is used to enable or disable the cache circuitry. 
The NW flag, in the same register, specifies whether the write-through or the write-back 
strategy is used for the caches.

 Another interesting feature of the Pentium cache is that it lets an operating system associate 
a different cache management policy with each page frame. 

 For this purpose, each Page Directory and each Page Table entry includes two flags: 
PCD (Page Cache Disable), which specifies whether the cache must be enabled or 
disabled while accessing data included in the page frame; 

 and PWT (Page Write-Through), which specifies whether the write-back or the write-
through strategy must be applied while writing data into the page frame. 

 Linux clears the PCD and PWT flags of all Page Directory and Page Table entries; as a 
result, caching is enabled for all page frames, and the write-back strategy is always adopted 
for writing.



  

2.4.8. Translation Lookaside Buffers 
(TLB)

 Besides general-purpose hardware caches, 80 x 86 processors include another 
cache called Translation Lookaside Buffers (TLB) to speed up linear address 
translation. 

 When a linear address is used for the first time, the corresponding physical address 
is computed through slow accesses to the Page Tables in RAM. The physical 
address is then stored in a TLB entry so that further references to the same linear 
address can be quickly translated.

 In a multiprocessor system, each CPU has its own TLB, called the local TLB of the 
CPU. Contrary to the hardware cache, the corresponding entries of the TLB need 
not be synchronized, because processes running on the existing CPUs may 
associate the same linear address with different physical ones.

 When the cr3 control register of a CPU is modified, the hardware automatically 
invalidates all entries of the local TLB, because a new set of page tables is in use 
and the TLBs are pointing to old data.



  

Paging in Linux

 Linux adopts a common paging model that fits both 32-bit and 64-bit 
architectures. 

 Up to version 2.6.10, the Linux paging model consisted of three paging levels. 
Starting with version 2.6.11, a four-level paging model has been adopted. This 
change has been made to fully support the linear address bit splitting used by the 
x86_64 platform.

 The four types of page tables illustrated in Figure 2-12 are called:

 Page Global Directory

 Page Upper Directory

 Page Middle Directory

 Page Table

 Thus the linear address can be split into up to five parts. Figure 2-12 does not 
show the bit numbers, because the size of each part depends on the computer 
architecture.



  

The Linux paging model



  

paging levels for 32 and 64 bits

 For 32-bit architectures with no Physical Address Extension, two paging levels 
are sufficient. 

 Linux essentially eliminates the Page Upper Directory and the Page Middle 
Directory fields by saying that they contain zero bits. However, the positions of 
the Page Upper Directory and the Page Middle Directory in the sequence of 
pointers are kept so that the same code can work on 32-bit and 64-bit 
architectures. 

 For 32-bit architectures with the Physical Address Extension enabled, three 
paging levels are used. 

 The Linux's Page Global Directory corresponds to the 80 x 86's Page Directory 
Pointer Table, the Page Upper Directory is eliminated, the Page Middle Directory 
corresponds to the 80 x 86's Page Directory, and the Linux's Page Table 
corresponds to the 80 x 86's Page Table.

 Finally, for 64-bit architectures three or four levels of paging are used depending on 
the linear address bit splitting performed by the hardware (see Table 2-2).



  

paging
 Linux's handling of processes relies heavily on paging. In fact, the automatic translation of 

linear addresses into physical ones makes the following design objectives feasible:

 Assign a different physical address space to each process, ensuring an efficient 
protection against addressing errors.

 Distinguish pages (groups of data) from page frames (physical addresses in main 
memory). This allows the same page to be stored in a page frame, then saved to disk 
and later reloaded in a different page frame. This is the basic ingredient of the virtual 
memory mechanism.

 In the remaining part of this chapter, we will refer for the sake of concreteness to the paging 
circuitry used by the 80 x 86 processors.

 As we will see in Chapter 9, each process has its own Page Global Directory and its own 
set of Page Tables. 

 When a process switch occurs, Linux saves the cr3 control register in the descriptor of 
the process previously in execution and then loads cr3 with the value stored in the descriptor 
of the process to be executed next. Thus, when the new process resumes its execution on the 
CPU, the paging unit refers to the correct set of Page Tables.



  

2.5.3. Physical Memory Layout

 During the initialization phase the kernel must build a physical addresses map that 
specifies which physical address ranges are usable by the kernel and which are 
unavailable (either because they map hardware devices' I/O shared memory or 
because the corresponding page frames contain BIOS data).

 The kernel considers the following page frames as reserved :

 Those falling in the unavailable physical address ranges

 Those containing the kernel's code and initialized data structures

 A page contained in a reserved page frame can never be dynamically assigned or 
swapped to disk.



  

Kernel installed in 0x00100000
 As a general rule, the Linux kernel is installed in RAM starting from the physical address 

0x00100000 i.e., from the second megabyte. 

 The total number of page frames required depends on how the kernel is configured. A typical 
configuration yields a kernel that can be loaded in less than 3 MB of RAM.

 Why isn't the kernel loaded starting with the first available megabyte of RAM? Well, the PC 
architecture has several peculiarities that must be taken into account. For example:

 Page frame 0 is used by BIOS to store the system hardware configuration detected 
during the Power-On Self-Test(POST); the BIOS of many laptops, moreover, writes data 
on this page frame even after the system is initialized.

 Physical addresses ranging from 0x000a0000 to 0x000fffff are usually reserved to BIOS 
routines and to map the internal memory of ISA graphics cards. This area is the well-
known hole from 640 KB to 1 MB in all IBM-compatible PCs: the physical addresses exist 
but they are reserved, and the corresponding page frames cannot be used by the 
operating system.

 Additional page frames within the first megabyte may be reserved by specific computer 
models. For example, the IBM ThinkPad maps the 0xa0 page frame into the 0x9f one.



  

Physical addresses map

 In the early stage of the boot sequence (see Appendix A), the kernel queries the 
BIOS and learns the size of the physical memory. 

 In recent computers, the kernel also invokes a BIOS procedure to build a list of 
physical address ranges and their corresponding memory types. 
(http://wiki.osdev.org/How_Do_I_Determine_The_Amount_Of_RAM)

 Later, the kernel executes the machine_specific_memory_setup( ) function, which 
builds the physical addresses map (see Table 2-9 for an example). 

 Of course, the kernel builds this table on the basis of the BIOS list, if this is available; 
otherwise the kernel builds the table following the conservative default setup: all page 
frames with numbers from 0x9f (LOWMEMSIZE( )) to 0x100 (HIGH_MEMORY) are 
marked as reserved.



  

Table 2-9. Example of BIOS-provided physical 
addresses map

Start End Type

0x00000000 0x0009ffff Usable

0x000f0000 0x000fffff Reserved

0x00100000 0x07feffff Usable

0x07ff0000 0x07ff2fff ACPI data

0x07ff3000 0x07ffffff ACPI NVS

0xffff0000 0xffffffff Reserved

A typical configuration for a computer having 128 MB of RAM is shown in Table 2-9. 

  The physical address range from 0x07ff0000 to 0x07ff2fff stores information about the 
hardware devices of the system written by the BIOS in the POST phase; during the initialization 
phase, the kernel copies such information in a suitable kernel data structure, and then 
considers these page frames usable. 
   Conversely, the physical address range of 0x07ff3000 to 0x07ffffff is mapped to ROM chips 
of the hardware devices. 
   The physical address range starting from 0xffff0000 is marked as reserved, because it is 
mapped by the hardware to the BIOS's ROM chip (see Appendix A). 
   Notice that the BIOS may not provide information for some physical address ranges (in 
the table, the range is 0x000a0000 to 0x000effff). To be on the safe side, Linux assumes that 
such ranges are not usable.



  

Table 2-10. Variables describing the 
kernel's physical memory layout

The setup_memory( ) function is invoked right after machine_specific_memory_setup( ): it 
analyzes the table of physical memory regions and initializes a few variables that describe the 
kernel's physical memory layout. 

Variable name Description
num_physpages Page frame number of the highest usable page frame total

ram_pages Total number of usable page frames

min_low_pfn Page frame number of the first usable page frame after the kernel mage in RAM

max_pfn Page frame number of the last usable page frame

max_low_pfn Page frame number of the last page frame directly mapped by the kernel (low mem)

totalhigh_pages Total number of page frames not directly mapped by the kernel (high mem)

highstart_pfn Page frame number of the first page frame not directly mapped by the kernel

highend_pfn Page frame number of the last page frame not directly mapped by the kernel



  

Skip first megabyte



  

2.5.4. Process Page Tables

 The linear address space of a process is divided into two parts:

 Linear addresses from 0x00000000 to 0xbfffffff can be addressed when the 
process runs in either User or Kernel Mode.

 Linear addresses from 0xc0000000 to 0xffffffff can be addressed only when the 
process runs in Kernel Mode.

 When a process runs in User Mode, it issues linear addresses smaller than 
0xc0000000; 

 when it runs in Kernel Mode, it is executing kernel code and the linear addresses 
issued are greater than or equal to 0xc0000000. In some cases, however, the kernel 
must access the User Mode linear address space to retrieve or store data.



  

0XC000000

 The PAGE_OFFSET macro yields the value 0xc0000000; this is the offset in the 
linear address space of a process where the kernel lives.

 The content of the first entries of the Page Global Directory that map linear addresses 
lower than 0xc0000000 (the first 768 entries with PAE disabled, or the first 3 entries 
with PAE enabled) depends on the specific process.

 Conversely, the remaining entries should be the same for all processes and equal to 
the corresponding entries of the master kernel Page Global Directory (see the 
following section).



  

2.5.5. Kernel Page Tables

 The kernel maintains a set of page tables for its own use, rooted at a so-called 
master kernel Page Global Directory. After system initialization, this set of page 
tables is never directly used by any process or kernel thread; rather, the highest 
entries of the master kernel Page Global Directory are the reference model for the 
corresponding entries of the Page Global Directories of every regular process in the 
system.

 We now describe how the kernel initializes its own page tables. This is a two-phase 
activity. In fact, right after the kernel image is loaded into memory, the CPU is still 
running in real mode; thus, paging is not enabled.

 In the first phase, the kernel creates a limited address space including the kernel's 
code and data segments, the initial Page Tables, and 128 KB for some dynamic data 
structures. This minimal address space is just large enough to install the kernel in 
RAM and to initialize its core data structures.

 In the second phase, the kernel takes advantage of all of the existing RAM and sets 
up the page tables properly. Let us examine how this plan is executed.



  

2.5.5.1. Provisional kernel 
Page Tables

 A provisional Page Global Directory is initialized statically during kernel compilation, 
while the provisional Page Tables are initialized by the startup_32( ) assembly 
language function defined in arch/i386/kernel/head_32.S 

 We won't bother mentioning the Page Upper Directories and Page Middle Directories 
anymore, because they are equated to Page Global Directory entries. PAE support is 
not enabled at this stage.

 The provisional Page Global Directory is contained in the swapper_pg_dir variable. 
The provisional Page Tables are stored starting from pg0, right after the end of the 
kernel's uninitialized data segments (symbol _end in Figure 2-13). 

 For the sake of simplicity, let's assume that the kernel's segments, the 
provisional Page Tables, and the 128 KB memory area fit in the first 8 MB of 
RAM. In order to map 8 MB of RAM, two Page Tables are required.

 The objective of this first phase of paging is to allow these 8 MB of RAM to be easily 
addressed both in real mode and protected mode.

 Identity mapping  +  linear mapping



  

Provisional kernel 
Page Tables

 The kernel must create a mapping from both the linear addresses 0x00000000 
through 0x007fffff and the linear addresses 0xc0000000 through 0xc07fffff into the 
physical addresses 0x00000000 through 0x007fffff. 

 In other words, the kernel during its first phase of initialization can address the first 8 
MB of RAM by either linear addresses identical to the physical ones or 8 MB worth of 
linear addresses, starting from 0xc0000000.

 The Kernel creates the desired mapping by filling all the swapper_pg_dir entries with 
zeroes, except for entries 0, 1, 0x300 (decimal 768), and 0x301 (decimal 769); the 
latter two entries span all linear addresses between 0xc0000000 and 0xc07fffff. The 
0, 1, 0x300, and 0x301 entries are initialized as follows:

 The address field of entries 0 and 0x300 is set to the physical address of pg0, 
while the address field of entries 1 and 0x301 is set to the physical address of the 
page frame following pg0.

 The Present, Read/Write, and User/Supervisor flags are set in all four entries.

 The Accessed, Dirty, PCD, PWD, and Page Size flags are cleared in all four 
entries.



  

Enabling paging

 The startup_32( ) assembly language function also enables the paging unit. 

 This is achieved by loading the physical address of swapper_pg_dir into the 
cr3 control register 

 and by setting the PG flag of the cr0 control register, as shown in the following 
equivalent code fragment:

    

movl $swapper_pg_dir - 0xc0000000,%eax 

movl %eax,%cr3       /* set the page table pointer.. */ 

movl %cr0,%eax 

orl $0x80000000,%eax 

movl %eax,%cr0        /* ..and set paging (PG) bit */



  

2.5.7. Handling the Hardware Cache 
and the TLB

 The last topic of memory addressing deals with how the kernel makes an 
optimal use of the hardware caches. 

 Hardware caches and Translation Lookaside Buffers play a crucial role in 
boosting the performance of modern computer architectures. 

 Several techniques are used by kernel developers to reduce the number of 
cache and TLB misses.



  

2.5.7.1. Handling the hardware cache

 Hardware caches are addressed by cache lines. The L1_CACHE_BYTES macro yields 
the size of a cache line in bytes. 

 On Intel models earlier than the Pentium 4, the macro yields the value 32; on a 
Pentium 4, it yields the value 128.

 To optimize the cache hit rate, the kernel considers the architecture in making the 
following decisions.

 The most frequently used fields of a data structure are placed at the low offset 
within the data structure, so they can be cached in the same line.

 When allocating a large set of data structures, the kernel tries to store each of them 
in memory in such a way that all cache lines are used uniformly.

 Cache synchronization is performed automatically by the 80 x 86 microprocessors, 
thus the Linux kernel for this kind of processor does not perform any hardware cache 
flushing. 

 The kernel does provide, however, cache flushing interfaces for processors that 
do not synchronize caches.



  

2.5.7.2. Handling the TLB

 Processors cannot synchronize their own TLB cache automatically because it is 
the kernel, and not the hardware, that decides when a mapping between a linear and 
a physical address is no longer valid. 

 Intel microprocessors offers only two TLB-invalidating techniques:

 All Pentium models automatically flush the TLB entries relative to non-global 
pages when a value is loaded into the cr3 register.

 In Pentium Pro and later models, the invlpg assembly language instruction 
invalidates a single TLB entry mapping a given linear address.

 Table 2-12 lists the Linux macros that exploit such hardware techniques; 

 these macros are the basic ingredients to implement architecture-independent 
methods



  

Table 2-12. TLB-invalidating macros for the Intel Pentium Pro and 
later processors

Macro name Description

_ _flush_tlb( ) Rewrites cr3 register back into itself

_ _flush_tlb_global( ) Disables global pages by clearing the PGE flag of cr4, 

rewrites cr3 register back into itself, and sets again the PGE flag 

_ _flush_tlb_single(addr) Executes invlpg assembly language instruction with 

parameter addr    



  

SMPs and avoiding TLB flushes

 The architecture-independent TLB-invalidating methods are extended quite simply to 
multiprocessor systems. The function running on a CPU sends an Interprocessor 
Interrupt to the other CPUs that forces them to execute the proper TLB-invalidating 
function.

 As a general rule, any process switch implies changing the set of active page tables.

 The kernel succeeds, however, in avoiding TLB flushes in the following cases:

 When performing a process switch between two regular processes that use the 
same set of page tables.

 When performing a process switch between a regular process and a kernel 
thread. 



  

More cases of flushes and lazy TLB mode

 Besides process switches, there are other cases in which the kernel needs to flush some 
entries in a TLB. 

 For instance, when the kernel assigns a page frame to a User Mode process and 
stores its physical address into a Page Table entry, it must flush any local TLB 
entry that refers to the corresponding linear address. 

 On multiprocessor systems, the kernel also must flush the same TLB entry on the 
CPUs that are using the same set of page tables, if any.

 To avoid useless TLB flushing in multiprocessor systems, the kernel uses a technique 
called lazy TLB mode . 

 The basic idea is the following: if several CPUs are using the same page tables and a 
TLB entry must be flushed on all of them, then TLB flushing may, in some cases, be 
delayed on CPUs running kernel threads.
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